Big Boss Fiber System

System Elements
Requirements
Concepts

J. Edelstein, SSL, UC. Berkeley

Big Boss Fiber System

Actuator termination

One of 5000 Fiber ferrules

Routing / Support

Focal Plane

Dec. & R.A. Yoke

Spectrograph Room

Fiber Connectors

- A close-packed focal-plane array of 5000 actuated input ends
- A fiber run from the focal plane to the spectrographs,
- Fiber slit assemblies (10 x) arranged into spectrograph slits of 500 fiber each

Spectrograph termination

500 Fiber Slit Assembly x 10

| Edelstein, UCB 2 Mar 10

Fibers

5000 each

~30 m length

Low OH fused silica (340-1060nm):

Bulk spectral transmission @ TBD %

Core 120 um diameter

FRD energy profile within f/4.0 for f/4.5 input @ telescope pupil Fiber construction

Cladding and jacketing combined outside diameter < 250 um Actuator Fiber flexing: bending & twisting angles @ Nx15k cycles Telescope Bundle flexing: bending & twisting angles ""

Polymicro

30m

FBP

nm

Throughput: End finish AR coating

AR Coating per end yields ~1% loss Coat direct to fiber ends (post glue & polish)

Modeled AR coating at 0 & 8 deg. incidence (by Polymicro on FBP).

FRD

Grasp degradation f # out / f # in < I

Mfg. run dependent
Degraded by stress
Fiber end finishing
Fiber support
Fiber bending

Plan
f/4.5 input
f/4.0 output
fiber output angular tol.
fiber selection

FRD of Polymicro FBP 120 um core fiber measured for BOSS.

JE, UCB 16 Feb 10

Opto-Mechanical

Fiber construction

Core & Cladding:
clad ratio 1.1 (to 1.2 for IR)
[secondary soft cladding for strength]

Coating
hard (e.g polyimide)
vs.
soft & hard coating (epoxy or acrylic)

Prieto, 2000 VIRMOS

A double layer of cladding is then applied. The first one is doped silica, and the second one is pure silica giving robustness to the fiber

External coating an epoxy [or acrylic] double layer coating The central layer is soft and preventS stress on the fiber, while the outer one is strong and gives robustness to assembly

JE, UCB 16 Feb 10

Fiber Input End Assy

Flat faced

AR coated (350-1060nm) < 1.5% loss

Ferrule terminated, removable

Ferrule axial position accuracy in actuator (focal plane budget)

Fiber end angle +/- 0.5 deg (FRD budget)

Ferrule radial position accuracy in actuator

Significant temperature variation, e.g -20 to 35 C

Low stress design for fiber survival and FRD stability

Ferrule material, process & design

Glue selection, gap & bonding conditions

End polishing

Jacket termination

AR Coating

Fiber Actuator Termination

Minimize compressive stress = FRD changes

Thermally matched ferrule

High compressive strength

= Ceramic ferrule tube Bond, cleave, polish, AR

Actuator joint (metal)

Clamp (replaceable)

Precision axial re-location

Fiber run

Length ~ 30 m

Sub-bundle units (fiber blocks) for routing & maintenance

Robust bundle construction, support & routing

flex testing life 500 nights X factor

Mid-run Coupling connector for installation & maintenance

~ 100 fiber per connector

< 2% loss

in controlled (enclosed) environment mate tested life 100

Fiber run & support

30 + meters

Focal plane to El. mount Elevation mount rotation scheme limited clearance

Elevation mount to Polar bearing Polar mount rotation scheme Polar mount to spectrograph run

Fiber run & support

Mass

```
Fiber Core, Clad, Jacket 0.1 kg/m

PVC + Nomex per 100 0.25 kg/m

0.35 kg/m total

~20 kg bundle
```

Bundle construction
anti-torsional windup
installation & hang pulling strength
+Keylar runners +Keylar sleeve

Supporting Link-trays & spools & tensioners Telescope facility dependent

Routing / pass-through

- > Facilitate Focal Plane assembly delivered with fibers in place
- > Rout cables through telescope to Spectrograph room

Serviceability

Allowed % fiber or actuator loss

Planned maintenance break for fiber/motor & spectrograph service

Routing aperture sizes

 $=> 2.5 \times 10 \times 1$ cm Fiber Block fit ?

Focal Plane

+ fiber jacket / sleeve start

Dec. Yoke

RA Yoke

to Spectrograph Room

Mulit-ganged connector breaks

e.g. US Conec w/ index gel

Thermal & contamination issues

Slit Array Assembly

500 fibers per slit assembly

134 mm tall

400 mm radius of curvature

curved fiber face

Fiber ends within 100um of radius of curvature

Mechanical interface & registration

Fiber back illumination

"Leaky Fiber adjacent"

Continuum spectral requirements for 'flat field'

Fiber slit assembly concept

Slit Assembly including 5 ea. Fiber blocks

Fiber Block @ 100 fibers @ 250 um spacing = 25 mm
Bond 100 fibers, polish, inspect, AR coat
Blocks precision located on Slit Assembly with pins
Slit Assembly precision locates to spectrograph
Slit Assembly supports & constrains fibers motion

Slit Assy Fiber Block concept

Fibers bonded to V-groove

Continuous pupil angle variation

Fiber Block concept

5 X 100 Fiber blocks per Spectrograph Slit Blocks precision located with pins on support plate

Key Interface Definitions

Actuator fiber interface
Focal plane actuator/fiber access & routing
Spectrograph slit interface & requirements
Telescope & Facility bundle routing interface

Development

IEU BCCP Fiber Testing Team Fiber Test Program

Ewha Woman's University IEU (Institute for Early Universe)

Phase I: Development

Test critical performance parameters Survey and evaluate techniques & vendors Test facility development

Throughput
Focal Ratio Degradation (FRD)
Termination Methods
Bundle construction
Fiber and bundle fatigue

Phase II: Production

Science fiber production Performance verification